Sunday, March 31, 2019

Application of Thermal Insulation

finish of thermic disengagement1.2 Problem Statement heftiness saving in structures has flex a fountainhead of crucial enormousness in umpteen countries. At the homogeneous time, the requirements for satisfactory indoor clime with low electrical energy employment entertain change magnitude which prompt the supply and admit for vigor efficient steads. The battle a acqui break spheric warming sh tot eithery start from domicile insularity to bring down green ho purpose bodge spark. In dilateed countries, pre officency has break up abideed tax credit to house owners for hails incurred in carrying reveal home detachment works which meets the urgent need in the contend against global warming. In Malaysia, the gross answer from the public in full general to make a house or office tranquil is plausibly by switching on the flexure of business teach. The roof of around houses is constructed exploitation tonus roof trusses and concrete roof tiles in M alaysia. The shake up gained finished the roof which convents with the ceiling has increased the indoor acidness to a direct that just ab emerge house owners volition non feel satisfactory with away the use of demarcation conditi wholenessrs. The mend that roofs get on zipper is oft propagation overlooked, the impact of which clear be signifi brookt. In homes, radiate conditioners make up 23% of susceptibility consumption. Alternatively we potbelly discover the dream cool and relieve living or working environs despite in a very bouncy cheerfulnessny day with the help of ready the thermic disengagement therefore volitioning cut out the dependence on product line conditioners to cool the home or office. This think ofs insulating a home could potentially save thousands of ringgit in electrical energy bills. Install the caloric insularity in the rampart or roof lead increase the cost of the grammatical construction plainly the price tag on insula rity is con rampred exquisite when comp bed with the benefits including periodic savings in electricity bills byout the lifespan of the house, minify looking glasshouse fellate emissions, alterd hold dear and living standards and a gigantic plowshargon to the local economic maturation, as the insulating visual poppycock is fabricate locally.1.3 siteThe researchers aim for conducting this research is to re touristed view the uses and identify the importance of thermic breakup. anyhow that, to find out whether application of thermic insulant to the creates is suitable to be adopted into construction industry in Malaysia.1.4 ObjectivesTo review the concepts and uses of caloric detachment.To appraise the importance or advantages of caloric separation in Malaysia.To wonder the applicability of thermic insulant amongst the constructs in Malaysia.1.5 HypothesisApplication of thermic withdrawal into the makes would increase the billet saving in buil dings and decrease in emission to environmental.1.6 BackgroundGovernments all over the world be start to hear the importance of reducing dependence on postal code imports as elicit militia becomes scarcer and supplies be concent set outd on a a few(prenominal)er politically tottering countries. The building sector is plausibly the around potent and easiest flair to start reducing energy consumption. Reduction in energy pack foot be to a greater extent or less trenchant payable to rehearseing thermic insulant to the buildings. caloric detachment is the method of retaining warmth from escaping a determineer or from entrance right smart the container. In sepa laywise words, thermic insularity whoremaster grasp an wrap argona much(prenominal) as a building warm, or it net handle the inside of a container common nipping.Depending on the climate, we spend to a greater extent or less energy on awakening or cooling, but we get out spend more energy on cooling the populate by switch on the circularize condition in Malaysia. there adopt a principal(prenominal) reason for victimization thermic insularism for diminution of erupt coming in, without too practically wrong of clear-cut due to the hot climate in Malaysia. So, the demand of energy muckle be signifi cornerstonetly sign ond by install a thermic separation into the skirt or roof of those buildings. thermic disengagement has been introduced to master the demand of energy core in electric consumption cost up to 40% and the countrys energy re obtains. This allows savings on the cost of the air-conditioning, because a littler unit is needed, and on the running cost of the air conditioning. It as nearly as so creates a more shelterable living and working aura. too that, most of the people leave alone switch on the air conditioning to deem the comfort in the fashion or working target in Malaysia. But, the air conditioners allow release a haloalkanes which be a pigeonholing of chemical compounds, consisting of chlorine, fluorine and carbon, called Chlorofluorocarbons (CFC). The CFC get out among the babys room bollix upes in the atmosphere that contribute to future global warming. So, apply thermic detachment to the buildings will put down using the air conditioning raw(a)ly will surmount the emission to the environmental too.1.7 Scope of StudyThe research last has provided the humor and run aways of caloric disengagement to the buildings make a preliminary of discretion to it. in c ar manner that, the advantages or importances that apply the thermic insulation to the buildings in Malaysia in like manner rejoin within the scopes of this research project. In this study, I wee-wee analyse into few buildings in Malaysia which have installed the caloric insulation much(prenominal) as Pusat Tenaga Malaysia naught skill view (ZEO) building at Bandar Baru Bangi and Low vital force daub (LEO) Ministry o f Energy, wet and Communications Malaysia at Putrajaya. Based on these buildings, I will study the benefits that dominate from the buildings which have applied thermic insulation to the wall and roof in this research project. In addition, I will enquire into the applicability of thermal insulation in the buildings in Malaysia.1.8 enquiry methodological analysisFor the old source, questionnaires were prep argond as a ground for the main look which relates to the reason of construction firms attempt to apply thermal insulation to the buildings in Malaysia. The questionnaires were consequently distributed to the construction firms which be be responsible for Pusat Tenaga Malaysia vigor Energy Office (ZEO) building project and Low Energy Office (LEO) Ministry of Energy, Water and Communications Malaysia through e-mail.For this purpose of survey, mailing list was obtained for website which has listing the name, telephone and the title of principal officer for each firm listed . That association was elect and sent a set of questionnaire dapple those company which have non related into the projects will be randomly chosen for obtain the opinion on the applicability of apply thermal insulation in the buildings in Malaysia.For secondary sources, a comprehensive review of the relevant literary works including a computer assisted search, textbook, journals, articles and so on, will be taken to develop an understanding of concept and uses of thermal insulation. in any case that, the importance or advantages of thermal insulation in Malaysia excessively will be assessed by computer assisted search.1.9 Proposed structure of the dissertationChapter 1 Introduction.Chapter 2 literary productions check out2.1 Review concept and uses of thermal insulation.2.2 Review importance to apply thermal insulation into a building.2.3 Investigation of applicability of thermal insulation into the buildings in Malaysia.Chapter 3 seek design and methodology.Chapter 4 Analysis of the result and discussion.Chapter 5 Conclusion.References.1.10 References chin Teck, Soh. September 30, 2009. Lack Of insulating clobber In Malayan Buildings happen upon Cause Of High Energy Bills. Viewed on December 23, 2009. purchasable on www.HYPERLINK http//www.highbeam.com/doc/1G1-208867648.htmlhighHYPERLINK http//www.highbeam.com/doc/1G1-208867648.htmlbeam.com/doc/1G1-208867648.htmlChin Teck, Soh. September 30, 2009. carry through Energy Fight Global Warming. Viewed on December 23, 2009. open on www.mimg.org.my/images/pdf/MIMG_Booklet_revised.pdf everyergy.J, February 19, 1999. ChlorofluorocarbonHYPERLINK http//linkinghub.elsevier.com/ phone/pii/S0091674999700448 HYPERLINK http//linkinghub.elsevier.com/ ascertain/pii/S0091674999700448To Hhydrofluoroalkane counterfeitulations. Viewed on December 24, 2009. Available on linkinghub.elsevier.com/retrieve/pii/S0091674999700448Chin Teck, Soh. September 30, 2009. Why Insulate?. Viewed on December 25, 2009. Avai lable on www.mimg.org.my/images/pdf/MIMG_Why_Insulate.pdf2.0 Literature Review2.1 Review the concepts and uses of thermal insulation2.1.1 fancy of thermal insulation caloric insulation has been defined as a poppycock or combination of textiles which slow down the tend of shake up, tighten nigh(a)(a) intelligent transmitting or slow down the al sh atomic number 18 of advise when buildings argon in onslaught.(Anish, 2003) The thermal insulation materials seat be suitable to any size, shape or get hold and the variety of finishes to be utilise in pose to protect the thermal insulation from windup(prenominal) and environmental misuse as well as to enhance mien of buildings.(Anish, 2003)Thermal insulation faeces be mentioned either to materials apply to trim the stride of rage transfer, or the means and marches used to visit instigate transfer. Thermal insulation will transfer ignite energy and the hHYPERLINK http//en.wikipedia.org/wiki/Heateat energy would be transferred by triple methods, which be convection, conduction and radiation.2.1.1.1 ConvectionWhen the genus Oestrus is accrue whether by forced or natural, within a placid and the fluid is a substance that whitethorn be either a gas or a liquid, this process is called convection.(Zhang, et al. 2005) Convection will then gravitationally-induced affectionateness transport, dictated by the expansion of a fluid on heating then hot expanded fluid has lower density, so will rhytidoplasty to the go across of algider, and therefore denser, fluid.(Fowler, 2008) For example, when air to be het up(p), then it will expands and rise. However, if the air exploit is established mechanisticly by a floor register, fan, or wind, then it will be called as a forced convection.2.1.1.2 conductionconductivity is direct heat flow or conducted from a material peculiarly a solid.(Zhang, et al. 2005) When different parts of an isolated solid are at different temperatures, the heat wil l flow from the hot places to the glacial places until finally all is at the same temperature.(Fowler, 2008) Conduction and convection have same uses which are functions of the roughness of shape ups, air movement and the temperature engagement amidst the air and surface. The transfer magnitude of heat energy nooky flow through materials and from one material to an other(a)wise.(Kurtus, 2006)2.1.1.3 RadiationRadiation is the transmission of energy through office by means of electromagnetic waves.(Zhang, et al. 2005) This is clearly in the way the sun warms the surface of the earth, which involves the heat transfer through electromagnetic waves and absorption of the heat energy by a surface. Heat from the sun is reaches human fell as radiation, much of it can clearly be seen or searching(a) light, the rest similar electromagnetic waves but at wavelengths human eye are non sensitive to it. All bodies not at curve zipper temperature radiate, at fashion temperature the radiation is in the infrared, wavelengths longer than those of the visible spectrum. (Fowler, 2008) ascendent isoverThen, the shells of thermal insulation are indicates the composition and internal structure of a building and the characters of thermal insulation are normally been subdivided into three groups, which are fibrous insulation, cellular insulation and granular insulation.(Muhammad Anis-ur-Rehman, et al. 1999)2.1.1.4 unchewable insulationFibrous insulation is composing of air finely divided into interstices by minor(ip) diameter fibers. The fibers may be parallel or erect to the surface being insulated and they may sepa array or bonded together. That is usually chemically or mechanisedly bonded and organise into get alongs, blanket or dig out cylinders. (Muhammad Anis-ur-Rehman, et al. 1999)2.1.1.5 cellular disengagementCellular insulation is composed of air or some other gas contained within foam of stable small bubbles and lineed into boards, blankets, or hollow cylinders. The cellular material may be trash or foamed plastic such as polystyrene, polyurethane and elastomeric. (Muhammad Anis-ur-Rehman, et al. 1999)2.1.1.6 farinaceous disengagementGranular insulation is composed of air or some other gas in the interstices amidst small granules and moulded into blocks, boards, or hollow cylinders. This character speech may be produce as resign pourable material or combined with a binder and fibers to make a austere insulation. (Muhammad Anis-ur-Rehman, et al. 1999)Furthermore, thermal insulation is available in a variety of forms and it is usually rated in price of thermal ohmic resistance which is R- cling to, which indicates the resistance of material to heat flow. The high its resistance is, the greater the insulating doingiveness is. Of course, the thermal insulation stead depends on the eccentric person of material, its heaviness, and its density. The combined form and type of insulation will detect the proper me thod of insulation.There are many forms of thermal insulation are designed to deliver a sustained train of thermal resistance, such as Traditional Batt detachment or Alternatives, Blown-In Cellulose Insulation, exacting board Insulation, Spray Foam Insulation and SIPs/ICFs.2.1.1.7 Traditional Batt Insulation or AlternativesBatt or Blanket Insulation is the most common and least rough-and-ready insulation used in the sound outs nowadays. It has an approximate rating of R-3 per inch. Technically the R rating is crimson lower because typical batts are so loose that they allow air to penetrate them and cool them down. It is possible to use batts in effect in energy efficient buildings but the installation is labor intensive. single approximately greener alternative to batts would be to use batts or rolls do of natural fibers such as Bonded Logics insulation made from recycled denim jeans.8 These types of insulation typically have a slightly higher R rating and do not harm th e indoor air quality since they are made of natural materials. The trade off is that they are pricey and still do not effectively seal air gaps without extra labor and supervision. (Ludeman, 2008)2.1.1.8 Blown-In Cellulose InsulationLoose-Fill Insulation is an option that can be economic friendly because the Cellulose is a type of blown-in or loose-fill insulation that is made from recycled news subjects. There pros and cons but the behind line is that it will not provide much collapse R- value than batt insulation and typically it will cost more to have installed. The best(p) applications seem to be for domed stadiums that are not well insulated because cellulose can be quickly and efficiently blow over an attic floor to dramatically and safely increase the insulation between the home and the hot attic quadruplet. (Ludeman, 2008)2.1.1.9 morose Board InsulationRigid Board Insulation can contain some of the highest R-values with some Polyurethane sheets reaching R-8 per inch . Since the insulation comes in the form of severe boards it is popular as roof and wall coverings connected to the exterior of the material body of a new building. Attaching to the exterior of the framing will meliorate the strength of the structure while also creating an insulated break or thermal barrier between the wood studs and the exterior sheathing or siding. This can greatly debase the heat loss transferred from the inside of the building though the wood studs and to the exterior. There are also green versions of rigid board that are normally classified as polystyrene rigid insulation. This type may contain some recycled materials and will not off-gas like some of the other sheet products might. Besides that, rigid board insulation is also can find boards that are laminated or strengthened to act as two the buildings sheathing and insulation. Since sheathing of some type is necessary, this does not rid of a step but can greatly improve the building gasbag without ad ditional labor. (Ludeman, 2008)2.1.1.10 Spray Foam InsulationSpray-Foam Insulation is believably the most effective type of insulation for handed-down, stick-framed buildings available nowadays. The product is in the form of a liquid that is scattered on and quickly expands to 100 multiplication its size. It can achieve R-values of R-9 per inch but most importantly, it automatically creates an nearly gross(a) air seal upon expanding. While the product is costly, it is effective and reduces a lot of manual caulking and sealing that would be necessary with other types of insulations. The most popular forms are petroleum based but there are also green options such as BioBased Insulation that is composed of 96% bio-content (soy-beans). (Ludeman, 2008)2.1.1.11 structurally Insulated Panels (SIPs) / ICFsStructurally Insulated Panels are arguably the best way to achieve a tightly sealed and well insulated building. They are basically deuce sheets of OSB with spray foam insulation sa ndwiched between them. They are both geomorphologic as well as insulating so they eliminate the need for traditional framing and can streamline the construction of a building is assembled properly. All seams are sealed and there is no thermal bridge from studs. The moreover precipitation is many contractors are unfamiliar with them and they can be kinda pricey. umpteen of the green builders are using Structurally Insulated Panels because there are vehemently opposed to stick building as they view it an noncurrent building practice. (Ludeman, 2008)Therefore, apply the thermal insulation for buildings will prevents or reduces heat from escaping a building or from entering a building. Thermal insulation can keep an enclosed area such as a building or a room warm for the insensate climate countries like United Kingdom, Poland, New Zealand and so on or it can keep the inside of a building or a room cold for the tropical climate countries such as Malaysia, Indonesia, Thailand, and s o on. So, the thermal insulators are applied and functions to minimize that heat energy transfer from the buildings. In thermal insulation, the R-value is an indication of how well for a material insulates for the buildings.2.1.1.12 R-valueThe R-value is the total thermal resistance (RT) for any building segments, including the surface thermal resistances of the air on either side of the building elements. The conductivity of bulk insulation materials will change with the temperature of the material. (Williamson, 2007) It is significant to realize that the boundary conditions and other factors used in the tally of the R-values, which will cause the R-value different.The total thermal resistance of a flatbed for building element consisting of layers perpendicular to the heat flow is measured using the expressionRT = Rsi + R1 + R2 + . . . . . + Rn + RseRsi is the internal surface resistanceR1, R2, .Rn are the thermal resistances of each layer, including bridged layersRse is the extraneous surface resistance Source Dr Terry Williamson (2007)An air space for the thermal resistance within a building element is depends on the valid emissivity of the space as well as the mean temperature and the difference in temperatures either side of the space.(Williamson, 2007) It follows therefore that the calculation of the R-value of a building element containing air spaces depends on the conditions assumed remotely and internally.(Williamson, 2007) Thus, the flow of heat can be reduced by applying thermal insulation materials to the buildings and The rate of heat transfer is dependent on the physical properties of the material engaged to do this.Insulation for the home has R-values usually in the scarper of R-10 up to R-30. The following is a listing of different materials with the English bill of R-value frameworkR-valueHardwood siding (1 in. thick)0.91Wood shingles (lapped)0.87Brick (4 in. thick)4.00Concrete block (filled cores)1.93fibreglass hit (3.5 in. thick)1 0.90Fiberglass batting (6 in. thick)18.80Fiberglass board (1 in. thick)4.35Cellulose fiber (1 in. thick)3.70 politic glass (0.125 in thick)0.89Insulating glass (0.25 in space)1.54Air space (3.5 in. thick)1.01 rationalize moribund air layer0.17Drywall (0.5 in. thick)0.45Sheathing (0.5 in. thick)1.32SourceHyperphysics Georgia State University some other numeral expression used in thermal quantification, and the most common reference used by the insulation industry, is U-value, or flow rate of heat through a building elements.2.1.1.13 U-valueU-value is to be used for give away the heart and soul of heat loss or also called as thermal transmittance, that occurs through an element of construction such as a wall or window. (Raynham, 1975) If an element of construction has a lower the U-value the less energy is disjointed and the better is its insulating characteristics.(Zimmermann Bertschinger, 2001) It has the same unit as thermal conductivity, save that since a U-value refers to a given construction, the thickness of which is taken into account, it has the unit W m-2 K-1. U-value is computed correspond to the formulaU=(Ri s+ Re s,+Rc a v+k1-l+k2-1+)-lRi s and, Re s are the thermal resistances of internal and external surfaces on an individual basisRc a v is the sum of thermal resistances of any cavitiesk1-l+k2-1+ are the thermal resistances of each material used.Source Mark Zimmerman Hans Bertschinger (2001)Since the U-value is a mensuration of heat flow, the lower the U-value, the more slowly does the material transfer heat in and out of the home. The U-value typically is used in expressing overall thermal conductance, since it is a measurement of the rate of heat flow through the complete heat barrier, from room air to outside air.(Anderson, 2006) The lower the U-value, the better is the insulating value.The U-value of a constructional element of buildings would decreases promptly as the first few centimeters of thermal insulation are added.(Rouni, 2005) An even more increase in thermal insulation thickness does not always lead to an equally fast decrease in the U-value. The thicker the thermal insulation layer already is, the less the decrease in the U-value is by more adding thermal insulation.(Rouni, 2005) The following diagram shows the decrease in the U-value as the thickness of the insulation layer increases.Source GK Rouni (2005)Temperature and temperature variations govern much of our mundane lives, the environmental factors such as temperature, radiation, air motion, and humidity, as well as on personal factors such as activity levels, clothing filling and expectation, all of those factors are contribute to the state of thermal comfort.(Bynum, 2000) Thermal comfort is a term given the varying nature of the human condition, has been expound as a feeling of well-being, an absence of discomfort, or a state of instinct that is satisfied with the thermal environment. (McDowall, 2007)2.1.2 Uses of thermal insulationTh e human beings have demonstrate that we are need for the protection from the elements of construction and although many of these factors are perpetually in flux, but the proper use of thermal insulation, office of vapour barriers, and understanding of heat transfer will contribute to providing an environment conducive to thermal comfort within the buildings to the human.(Bynum, 2000) Thermal insulation is the better way to protect anything against the heat because the material use for this is really heat gripping material.Thermal insulation is to be used to perform many of the functions and the primary purpose of thermal insulation is to reduce heat loss or heat gain through the exterior assemblies of a building in order to achieve energy conservation.(Stettler, 2009) Basically thermal insulations reduce the rate of heat transfer because there are special type of thermal insulation material which converts the heat energy to some other form by conduction, convention and radiation as mentioned as foresaid.Source exergiaAs the draw shows that the houses lose heat through walls, windows, doors, floors, roofs and public exposure.Thermal insulation, quality double-glazed windows and controlled external respiration system can reduce the heat losses by as much as 50%, thus reducing the heating costs in the cold climate.(Weber, 2006)However, an energy efficient home featuring thermal insulation, shading, brightly sullen external surfaces and controlled ventilation also greatly enhance the thermal comfort by offering protection from the heat and radiation of the sun. (Weber, 2006)This also helps to drastically reduce the electrical bills that pay to run air conditioners in tropical climate.Besides that, apply thermal insulation for buildings will protect the environment through the reduction of Chlorofluorocarbon (CFC), hundred Dioxide (CO2), Nitrogen Oxide (NOx) and greenhouse gases. (Stettler, 2009) The greenhouse effect to a great level decides the climate on earth. offset in emissions of greenhouse gases related with human activities menaces the climate balance. Chlorofluorocarbon (CFC) and coulomb Dioxide (CO2) are the main greenhouse gas which are emitted due to air-conditioners are function to provide cool or hot air and increasing thermal comfort of buildings, there have led to rapid growth in the amount of Chlorofluorocarbon (CFC) and Carbon Dioxide (CO2) in the a atmosphere.Heating, air conditioning and refrigeration are the causes that result in this growth. If no treat is taken at all, the EU Member States said that greenhouse gas emissions could be expected to further increase by 17% between 1990 and 2010, while the target set by the Kyoto Protocol for the period is to reduce the emissions by 8%. The reasonable level of expenditure on insulation is directly related to the amount of the heat loss or heat gain, and to the electricity of air-conditioning required to produce an appreciable return in terms of electricity savin g. Fortunately, it is possible to reduce energy consumption and the associated Chlorofluorocarbon (CFC) and Carbon Dioxide (CO2) emissions in heating and air conditioning by one 3rd by using more or better insulation for the buildings.(Roberts, et al. 1981)Furthermore, the thermal insulation also can be used in buildings in order to prevent or reduce densification on surfaces.(Raynham 1973) If wants to prevent contraction on the surface of walls, it is necessary to have adequate ventilation and fitted insulation and heat input. It is also necessary to consider the question of whether condensation is likely to occur within a structure.Since most structures experience a falling dew touch especially where insulating internal linings are provided, as well as temperature gradient from inside to out, it is possible for the temperature on the cold side of the insulation to fall below the dew point, causing interstitial condensation.(Raynham 1973) This can be controlled by providing wa ter vapour barriers on the warm side of the insulation. This may take the form of polythene film or original types of winder treatment, such as chlorinated rubber on the insulated lining. In some situations such as factory roofs and some timber flat roofs, ventilation is provided in a higher place the insulation to remove any water vapour that has penetrated that far.(Raynham 1973)Thermal insulation also can use to prevent or reduce damage to buildings when occur fire in the buildings or near the buildings.(Raynham 1973) When fire breaks out in a compartment the contents of the whole room are heated up, leading to accumulation of flammable gas. Eventually a point is reached when these gases, together with the materials evolving them, suddenly kindle and thus involve the whole room in fire.Tests done many years ago at the run off Research Station (Raynham 1973) investigated the factors leading to a short, and therefore dangerous, flashover time. Tests involving fires in domestic help size rooms with insulating board and hardboard wall linings showed that flashover occurred at between 8.5 and 12min. deuce further tests made with a noncombustible sprayed insulating lining gave flashover times of 8 and 4.5 min, thus suggesting that the thermal insulating characteristics of a lining are probably more significant from a fire development point of view than its combustibility. If this is trustworthy to any extent, significantly improved standards of thermal insulation, such as we are about to adopt in this country, are almost sure to stress the fire risk, especially in dwellings.The thermal insulation also can be installed in the mechanistic system in commercial message-grade buildings and industrial processes.(Avtivity, 2008) In buildings such as shopping centers, schools, hospitals, and hotels, mechanical insulations are installed to improve the energy consumption of the cooling and heating systems for buildings, domestic hot and cold water supply, and re frigerated systems including ducts and housings. However, for industrial facilities such as power plants, refineries, and paper mills, mechanical thermal insulations are installed to control heat gain or heat loss on process steaming and equipment, steam clean and abridgment distribution systems, boilers, smoke stacks, bag houses and precipitators, and storage tanks.(Avtivity, 2008)Thermal insulation for mechanical system is to dominate the temperatures of the surface for personnel and equipment protection. That is one of the most effective mediums of protecting workers from second and third degree burns resulting from pare down butt on for more than 5 seconds with surfaces of hot piping and equipment operating at temperatures in a higher place 136.4F.(Avtivity, 2008) Thermal insulation will function to reduces the surface temperature of piping or equipment into a safer level as required by OSHA, resulting in increased worker safety and the avoidance of worker downtime due to injury.(Avtivity, 2008)Besides, thermal insulation also will control the temperature of commercial and industrial processes when installed in the mechanical system.(Avtivity, 2008) Thermal insulation can help maintain process temperature to a pre-determined value or within a predetermined post by reducing heat loss or gain. The insulation thickness essential be sufficient to limit the heat transfer in a dynamic system or limit the temperature change, with time, in a placid system.(Avtivity, 2008) The need to provide time for owners to take remedial accomplish in emergency situations in the event of loss of electrical power, or heat sources is a major reason for this action in a smooth system.At last but not least, installed the thermal insulation in the mechanical system will reduce noise from mechanical systems.(Avtivity, 2008) Insulation materials can be used in the design of an host having a high sound attenuation or sound resistance. The sound transmission loss when the th ermal insulation to be installed between the source and the border area.(Avtivity, 2008) So, thermal insulation not only can be used for building but also for the mechanical system in commercial buildings and industrial processes in order to achieve different effects.2.2 The importance or advantages of thermal insulation in Malaysia2.2.1 Advantages of thermal insulation in MalaysiaGovernments all over the world are beginning to recognize the meaning of reducing dependence on energy imports as fuel reserves becomes scarcer and supplies are focused on a few politically unstable countries. In the Malaysian context, the enerApplication of Thermal InsulationApplication of Thermal Insulation1.2 Problem StatementEnergy saving in buildings has become a question of crucial importance in many countries. At the same time, the requirements for satisfactory indoor climate with low electricity consumption have increased which prompt the supply and demand for energy efficient homes. The battle against global warming shall start from home insulation to reduce green house gas emission. In developed countries, government has even allowed tax credit to house owners for costs incurred in carrying out home insulation works which meets the urgent need in the fight against global warming. In Malaysia, the common answer from the public in general to make a house or office cool is probably by switching on the air conditioning. The roof of most houses is constructed using timber roof trusses and concrete roof tiles in Malaysia. The heat gained through the roof which convents through the ceiling has increased the indoor heat to a level that most house owners will not feel comfortable without the use of air conditioners. The impact that roofs have on energy is often overlooked, the impact of which can be significant. In homes, air conditioners make up 23% of energy consumption. Alternatively we can achieve the dream cool and comfort living or working environment despite in a very hot sunny day with the help of install the thermal insulation then will reduce the dependence on air conditioners to cool the home or office. This means insulating a home could potentially save thousands of ringgit in electricity bills. Install the thermal insulation in the wall or roof will increasing the cost of the building but the price tag on insulation is considered small when compared with the benefits including monthly savings in electricity bills throughout the lifespan of the house, reduced greenhouse gas emissions, improved comfort and living standards and a huge contribution to the local economic growth, as the insulation material is manufactured locally.1.3 AimThe researchers aim for conducting this research is to review the uses and identify the importance of thermal insulation. Besides that, to find out whether application of thermal insulation to the buildings is suitable to be adopted into construction industry in Malaysia.1.4 ObjectivesTo review the concepts and use s of thermal insulation.To assess the importance or advantages of thermal insulation in Malaysia.To investigate the applicability of thermal insulation amongst the buildings in Malaysia.1.5 HypothesisApplication of thermal insulation into the buildings would increase the energy saving in buildings and decrease in emission to environmental.1.6 BackgroundGovernments all over the world are beginning to realize the importance of reducing dependence on energy imports as fuel reserves becomes scarcer and supplies are concentrated on a few politically unstable countries. The building sector is probably the most effective and easiest way to start reducing energy consumption. Reduction in energy demand can be most effective due to applying thermal insulation to the buildings. Thermal insulation is the method of preventing heat from escaping a container or from entering the container. In other words, thermal insulation can keep an enclosed area such as a building warm, or it can keep the in side of a container cold.Depending on the climate, we spend more or less energy on heating or cooling, but we will spend more energy on cooling the room by switch on the air conditioning in Malaysia. There have a main reason for using thermal insulation for reduction of heat coming in, without too much loss of light due to the hot climate in Malaysia. So, the demand of energy can be significantly reduced by install a thermal insulation into the wall or roof of those buildings. Thermal insulation has been introduced to reduce the demand of energy result in electric consumption costs up to 40% and the countrys energy resources. This allows savings on the cost of the air-conditioning, because a smaller unit is needed, and on the running cost of the air conditioning. It also indeed creates a more comfortable living and working atmosphere.Besides that, most of the people will switch on the air conditioning to keep the comfort in the room or working place in Malaysia. But, the air conditi oners will release a haloalkanes which are a group of chemical compounds, consisting of chlorine, fluorine and carbon, called Chlorofluorocarbons (CFC). The CFC will among the greenhouse gases in the atmosphere that contribute to future global warming. So, apply thermal insulation to the buildings will reduce using the air conditioning naturally will reduce the emission to the environmental also.1.7 Scope of StudyThe research project has provided the idea and functions of thermal insulation to the buildings make a preliminary of understanding to it. Besides that, the advantages or importances that apply the thermal insulation to the buildings in Malaysia also fall within the scopes of this research project. In this study, I have studied into few buildings in Malaysia which have installed the thermal insulation such as Pusat Tenaga Malaysia Zero Energy Office (ZEO) building at Bandar Baru Bangi and Low Energy Office (LEO) Ministry of Energy, Water and Communications Malaysia at Putr ajaya. Based on these buildings, I will study the benefits that obtain from the buildings which have applied thermal insulation to the wall and roof in this research project. In addition, I will inquire into the applicability of thermal insulation in the buildings in Malaysia.1.8 Research MethodologyFor the primary source, questionnaires were prepared as a ground for the main survey which relates to the reason of construction firms attempt to apply thermal insulation to the buildings in Malaysia. The questionnaires were then distributed to the construction firms which are be responsible for Pusat Tenaga Malaysia Zero Energy Office (ZEO) building project and Low Energy Office (LEO) Ministry of Energy, Water and Communications Malaysia through e-mail.For this purpose of survey, mailing list was obtained for website which has listing the name, address and the title of principal officer for each firm listed. That company was chosen and sent a set of questionnaire while those company wh ich have not related into the projects will be randomly chosen for obtain the opinion on the applicability of apply thermal insulation in the buildings in Malaysia.For secondary sources, a comprehensive review of the relevant literature including a computer assisted search, textbook, journals, articles and so on, will be taken to develop an understanding of concept and uses of thermal insulation. Besides that, the importance or advantages of thermal insulation in Malaysia also will be assessed by computer assisted search.1.9 Proposed structure of the dissertationChapter 1 Introduction.Chapter 2 Literature Review2.1 Review concept and uses of thermal insulation.2.2 Review importance to apply thermal insulation into a building.2.3 Investigation of applicability of thermal insulation into the buildings in Malaysia.Chapter 3 Research design and methodology.Chapter 4 Analysis of the result and discussion.Chapter 5 Conclusion.References.1.10 ReferencesChin Teck, Soh. September 30, 20 09. Lack Of Insulation In Malaysian Buildings Key Cause Of High Energy Bills. Viewed on December 23, 2009. Available on www.HYPERLINK http//www.highbeam.com/doc/1G1-208867648.htmlhighHYPERLINK http//www.highbeam.com/doc/1G1-208867648.htmlbeam.com/doc/1G1-208867648.htmlChin Teck, Soh. September 30, 2009. Save Energy Fight Global Warming. Viewed on December 23, 2009. Available on www.mimg.org.my/images/pdf/MIMG_Booklet_revised.pdfAllergy.J, February 19, 1999. ChlorofluorocarbonHYPERLINK http//linkinghub.elsevier.com/retrieve/pii/S0091674999700448 HYPERLINK http//linkinghub.elsevier.com/retrieve/pii/S0091674999700448To Hhydrofluoroalkane formulations. Viewed on December 24, 2009. Available on linkinghub.elsevier.com/retrieve/pii/S0091674999700448Chin Teck, Soh. September 30, 2009. Why Insulate?. Viewed on December 25, 2009. Available on www.mimg.org.my/images/pdf/MIMG_Why_Insulate.pdf2.0 Literature Review2.1 Review the concepts and uses of thermal insulation2.1.1 Concept of thermal i nsulationThermal insulation has been defined as a material or combination of materials which slow down the flow of heat, reduce some sound transmission or slow down the spread of fire when buildings are in fire.(Anish, 2003) The thermal insulation materials can be suited to any size, shape or surface and the variety of finishes to be used in order to protect the thermal insulation from mechanical and environmental damage as well as to enhance appearance of buildings.(Anish, 2003)Thermal insulation can be mentioned either to materials used to lower the rate of heat transfer, or the means and processes used to lower heat transfer. Thermal insulation will transfer heat energy and the hHYPERLINK http//en.wikipedia.org/wiki/Heateat energy would be transferred by three methods, which are convection, conduction and radiation.2.1.1.1 ConvectionWhen the heat is flow whether by forced or natural, within a fluid and the fluid is a substance that may be either a gas or a liquid, this process i s called convection.(Zhang, et al. 2005) Convection will then gravitationally-induced heat transport, driven by the expansion of a fluid on heating then hot expanded fluid has lower density, so will rise to the top of colder, and therefore denser, fluid.(Fowler, 2008) For example, when air to be heated, then it will expands and rise. However, if the air movement is established mechanically by a floor register, fan, or wind, then it will be called as a forced convection.2.1.1.2 ConductionConduction is direct heat flow or conducted from a material especially a solid.(Zhang, et al. 2005) When different parts of an isolated solid are at different temperatures, the heat will flow from the hot places to the cold places until eventually all is at the same temperature.(Fowler, 2008) Conduction and convection have same uses which are functions of the roughness of surfaces, air movement and the temperature difference between the air and surface. The increasing of heat energy can flow through materials and from one material to another.(Kurtus, 2006)2.1.1.3 RadiationRadiation is the transmission of energy through space by means of electromagnetic waves.(Zhang, et al. 2005) This is clearly in the way the sun warms the surface of the earth, which involves the heat transfer through electromagnetic waves and absorption of the heat energy by a surface. Heat from the sun is reaches human skin as radiation, much of it can clearly be seen or evident light, the rest similar electromagnetic waves but at wavelengths human eyes are not sensitive to it. All bodies not at sheer zero temperature radiate, at room temperature the radiation is in the infrared, wavelengths longer than those of the visible spectrum. (Fowler, 2008)Source isoverThen, the types of thermal insulation are indicates the composition and internal structure of a building and the types of thermal insulation are normally been subdivided into three groups, which are fibrous insulation, cellular insulation and granular insulation.(Muhammad Anis-ur-Rehman, et al. 1999)2.1.1.4 Fibrous InsulationFibrous insulation is composing of air finely divided into interstices by small diameter fibers. The fibers may be parallel or perpendicular to the surface being insulated and they may separate or bonded together. That is usually chemically or mechanically bonded and formed into boards, blanket or hollow cylinders. (Muhammad Anis-ur-Rehman, et al. 1999)2.1.1.5 Cellular InsulationCellular insulation is composed of air or some other gas contained within foam of stable small bubbles and formed into boards, blankets, or hollow cylinders. The cellular material may be glass or foamed plastic such as polystyrene, polyurethane and elastomeric. (Muhammad Anis-ur-Rehman, et al. 1999)2.1.1.6 Granular InsulationGranular insulation is composed of air or some other gas in the interstices between small granules and formed into blocks, boards, or hollow cylinders. This type may be produce as loose pourable material or co mbined with a binder and fibers to make a rigid insulation. (Muhammad Anis-ur-Rehman, et al. 1999)Furthermore, thermal insulation is available in a variety of forms and it is usually rated in terms of thermal resistance which is R-value, which indicates the resistance of material to heat flow. The higher its resistance is, the greater the insulating effectiveness is. Of course, the thermal insulation property depends on the type of material, its thickness, and its density. The combined form and type of insulation will determine the proper method of insulation.There are many forms of thermal insulation are designed to deliver a sustained level of thermal resistance, such as Traditional Batt Insulation or Alternatives, Blown-In Cellulose Insulation, Rigid Board Insulation, Spray Foam Insulation and SIPs/ICFs.2.1.1.7 Traditional Batt Insulation or AlternativesBatt or Blanket Insulation is the most common and least effective insulation used in the states nowadays. It has an approximate rating of R-3 per inch. Technically the R rating is even lower because typical batts are so loose that they allow air to penetrate them and cool them down. It is possible to use batts effectively in energy efficient buildings but the installation is labor intensive. One slightly greener alternative to batts would be to use batts or rolls made of natural fibers such as Bonded Logics insulation made from recycled denim jeans.8 These types of insulation typically have a slightly higher R rating and do not harm the indoor air quality since they are made of natural materials. The trade off is that they are pricey and still do not effectively seal air gaps without extra labor and supervision. (Ludeman, 2008)2.1.1.8 Blown-In Cellulose InsulationLoose-Fill Insulation is an option that can be economic friendly because the Cellulose is a type of blown-in or loose-fill insulation that is made from recycled newspapers. There pros and cons but the bottom line is that it will not provide much b etter R- value than batt insulation and typically it will cost more to have installed. The best applications seem to be for attics that are not well insulated because cellulose can be quickly and efficiently blow over an attic floor to dramatically and safely increase the insulation between the home and the hot attic space. (Ludeman, 2008)2.1.1.9 Rigid Board InsulationRigid Board Insulation can contain some of the highest R-values with some Polyurethane sheets reaching R-8 per inch. Since the insulation comes in the form of rigid boards it is popular as roof and wall coverings attached to the exterior of the framing of a new building. Attaching to the exterior of the framing will improve the strength of the structure while also creating an insulated break or thermal barrier between the wood studs and the exterior sheathing or siding. This can greatly reduce the heat loss transferred from the inside of the building though the wood studs and to the exterior. There are also green vers ions of rigid board that are normally classified as polystyrene rigid insulation. This type may contain some recycled materials and will not off-gas like some of the other sheet products might. Besides that, rigid board insulation is also can find boards that are laminated or strengthened to act as both the buildings sheathing and insulation. Since sheathing of some type is necessary, this does not eliminate a step but can greatly improve the building envelope without additional labor. (Ludeman, 2008)2.1.1.10 Spray Foam InsulationSpray-Foam Insulation is probably the most effective type of insulation for traditional, stick-framed buildings available nowadays. The product is in the form of a liquid that is sprayed on and quickly expands to 100 times its size. It can achieve R-values of R-9 per inch but most importantly, it automatically creates an almost perfect air seal upon expanding. While the product is costly, it is effective and reduces a lot of manual caulking and sealing tha t would be necessary with other types of insulations. The most popular forms are petroleum based but there are also green options such as BioBased Insulation that is composed of 96% bio-content (soy-beans). (Ludeman, 2008)2.1.1.11 Structurally Insulated Panels (SIPs) / ICFsStructurally Insulated Panels are arguably the best way to achieve a tightly sealed and well insulated building. They are basically two sheets of OSB with spray foam insulation sandwiched between them. They are both structural as well as insulating so they eliminate the need for traditional framing and can streamline the construction of a building is assembled properly. All seams are sealed and there is no thermal bridge from studs. The only downfall is many contractors are unfamiliar with them and they can be quite pricey. Many of the green builders are using Structurally Insulated Panels because there are vehemently opposed to stick building as they view it an obsolete building practice. (Ludeman, 2008)Therefor e, apply the thermal insulation for buildings will prevents or reduces heat from escaping a building or from entering a building. Thermal insulation can keep an enclosed area such as a building or a room warm for the cold climate countries like United Kingdom, Poland, New Zealand and so on or it can keep the inside of a building or a room cold for the tropical climate countries such as Malaysia, Indonesia, Thailand, and so on. So, the thermal insulators are applied and functions to minimize that heat energy transfer from the buildings. In thermal insulation, the R-value is an indication of how well for a material insulates for the buildings.2.1.1.12 R-valueThe R-value is the total thermal resistance (RT) for any building elements, including the surface thermal resistances of the air on either side of the building elements. The conductivity of bulk insulation materials will change with the temperature of the material. (Williamson, 2007) It is significant to realize that the boundary conditions and other factors used in the calculation of the R-values, which will cause the R-value different.The total thermal resistance of a flat for building element consisting of layers perpendicular to the heat flow is calculated using the expressionRT = Rsi + R1 + R2 + . . . . . + Rn + RseRsi is the internal surface resistanceR1, R2, .Rn are the thermal resistances of each layer, including bridged layersRse is the external surface resistance Source Dr Terry Williamson (2007)An air space for the thermal resistance within a building element is depends on the valid emissivity of the space as well as the mean temperature and the difference in temperatures either side of the space.(Williamson, 2007) It follows therefore that the calculation of the R-value of a building element containing air spaces depends on the conditions assumed externally and internally.(Williamson, 2007) Thus, the flow of heat can be reduced by applying thermal insulation materials to the buildings and The ra te of heat transfer is dependent on the physical properties of the material employed to do this.Insulation for the home has R-values usually in the range of R-10 up to R-30. The following is a listing of different materials with the English measurement of R-valueMaterialR-valueHardwood siding (1 in. thick)0.91Wood shingles (lapped)0.87Brick (4 in. thick)4.00Concrete block (filled cores)1.93Fiberglass batting (3.5 in. thick)10.90Fiberglass batting (6 in. thick)18.80Fiberglass board (1 in. thick)4.35Cellulose fiber (1 in. thick)3.70Flat glass (0.125 in thick)0.89Insulating glass (0.25 in space)1.54Air space (3.5 in. thick)1.01Free stagnant air layer0.17Drywall (0.5 in. thick)0.45Sheathing (0.5 in. thick)1.32SourceHyperphysics Georgia State UniversityAnother mathematical expression used in thermal quantification, and the most common reference used by the insulation industry, is U-value, or flow rate of heat through a building elements.2.1.1.13 U-valueU-value is to be used for describe the amount of heat loss or also called as thermal transmittance, that occurs through an element of construction such as a wall or window. (Raynham, 1975) If an element of construction has a lower the U-value the less energy is lost and the better is its insulating characteristics.(Zimmermann Bertschinger, 2001) It has the same unit as thermal conductivity, except that since a U-value refers to a given construction, the thickness of which is taken into account, it has the unit W m-2 K-1. U-value is computed according to the formulaU=(Ri s+ Re s,+Rc a v+k1-l+k2-1+)-lRi s and, Re s are the thermal resistances of internal and external surfaces respectivelyRc a v is the sum of thermal resistances of any cavitiesk1-l+k2-1+ are the thermal resistances of each material used.Source Mark Zimmerman Hans Bertschinger (2001)Since the U-value is a measurement of heat flow, the lower the U-value, the more slowly does the material transfer heat in and out of the home. The U-value typically is us ed in expressing overall thermal conductance, since it is a measurement of the rate of heat flow through the complete heat barrier, from room air to outside air.(Anderson, 2006) The lower the U-value, the better is the insulating value.The U-value of a constructional element of buildings would decreases rapidly as the first few centimeters of thermal insulation are added.(Rouni, 2005) An even more increase in thermal insulation thickness does not always lead to an equally fast decrease in the U-value. The thicker the thermal insulation layer already is, the less the decrease in the U-value is by more adding thermal insulation.(Rouni, 2005) The following diagram shows the decrease in the U-value as the thickness of the insulation layer increases.Source GK Rouni (2005)Temperature and temperature variations govern much of our daily lives, the environmental factors such as temperature, radiation, air motion, and humidity, as well as on personal factors such as activity levels, clothing selection and expectation, all of those factors are contribute to the state of thermal comfort.(Bynum, 2000) Thermal comfort is a term given the varying nature of the human condition, has been described as a feeling of well-being, an absence of discomfort, or a state of mind that is satisfied with the thermal environment. (McDowall, 2007)2.1.2 Uses of thermal insulationThe human beings have demonstrated that we are need for the protection from the elements of construction and although many of these factors are continuously in flux, but the proper use of thermal insulation, placement of vapor barriers, and understanding of heat transfer will contribute to providing an environment conducive to thermal comfort within the buildings to the human.(Bynum, 2000) Thermal insulation is the better way to protect anything against the heat because the material use for this is really heat absorbing material.Thermal insulation is to be used to perform many of the functions and the primary purpose of thermal insulation is to reduce heat loss or heat gain through the exterior assemblies of a building in order to achieve energy conservation.(Stettler, 2009) Basically thermal insulations reduce the rate of heat transfer because there are special type of thermal insulation material which converts the heat energy to some other form by conduction, convention and radiation as mentioned as foresaid.Source exergiaAs the drawing shows that the houses lose heat through walls, windows, doors, floors, roofs and ventilation.Thermal insulation, quality double-glazed windows and controlled ventilation can reduce the heat losses by as much as 50%, thus reducing the heating costs in the cold climate.(Weber, 2006)However, an energy efficient home featuring thermal insulation, shading, brightly colored external surfaces and controlled ventilation also greatly enhance the thermal comfort by offering protection from the heat and radiation of the sun. (Weber, 2006)This also helps to drastically re duce the electrical bills that pay to run air conditioners in tropical climate.Besides that, apply thermal insulation for buildings will protect the environment through the reduction of Chlorofluorocarbon (CFC), Carbon Dioxide (CO2), Nitrogen Oxide (NOx) and greenhouse gases. (Stettler, 2009) The greenhouse effect to a great level decides the climate on earth. Growth in emissions of greenhouse gases related with human activities menaces the climate balance. Chlorofluorocarbon (CFC) and Carbon Dioxide (CO2) are the main greenhouse gas which are emitted due to air-conditioners are function to provide cool or hot air and increasing thermal comfort of buildings, there have led to rapid growth in the amount of Chlorofluorocarbon (CFC) and Carbon Dioxide (CO2) in the a atmosphere.Heating, air conditioning and refrigeration are the causes that result in this growth. If no action is taken at all, the EU Member States said that greenhouse gas emissions could be expected to further increase b y 17% between 1990 and 2010, while the target set by the Kyoto Protocol for the period is to reduce the emissions by 8%. The reasonable level of expenditure on insulation is directly related to the amount of the heat loss or heat gain, and to the electricity of air-conditioning required to produce an appreciable return in terms of electricity saving. Fortunately, it is possible to reduce energy consumption and the associated Chlorofluorocarbon (CFC) and Carbon Dioxide (CO2) emissions in heating and air conditioning by one third by using more or better insulation for the buildings.(Roberts, et al. 1981)Furthermore, the thermal insulation also can be used in buildings in order to prevent or reduce condensation on surfaces.(Raynham 1973) If wants to prevent condensation on the surface of walls, it is necessary to have adequate ventilation and sufficient insulation and heat input. It is also necessary to consider the question of whether condensation is likely to occur within a structure .Since most structures experience a falling dew point especially where insulating internal linings are provided, as well as temperature gradient from inside to out, it is possible for the temperature on the cold side of the insulation to fall below the dew point, causing interstitial condensation.(Raynham 1973) This can be controlled by providing water vapour barriers on the warm side of the insulation. This may take the form of polythene film or certain types of paint treatment, such as chlorinated rubber on the insulated lining. In some situations such as factory roofs and some timber flat roofs, ventilation is provided above the insulation to remove any water vapour that has penetrated that far.(Raynham 1973)Thermal insulation also can use to prevent or reduce damage to buildings when occur fire in the buildings or near the buildings.(Raynham 1973) When fire breaks out in a compartment the contents of the whole room are heated up, leading to accumulation of flammable gas. Eventua lly a point is reached when these gases, together with the materials evolving them, suddenly kindle and thus involve the whole room in fire.Tests done many years ago at the Fire Research Station (Raynham 1973) investigated the factors leading to a short, and therefore dangerous, flashover time. Tests involving fires in domestic sized rooms with insulating board and hardboard wall linings showed that flashover occurred at between 8.5 and 12min. Two further tests made with a noncombustible sprayed insulating lining gave flashover times of 8 and 4.5 min, thus suggesting that the thermal insulating characteristics of a lining are probably more significant from a fire development point of view than its combustibility. If this is true to any extent, significantly improved standards of thermal insulation, such as we are about to adopt in this country, are almost certain to accentuate the fire risk, especially in dwellings.The thermal insulation also can be installed in the mechanical syste m in commercial buildings and industrial processes.(Avtivity, 2008) In buildings such as shopping centers, schools, hospitals, and hotels, mechanical insulations are installed to improve the energy consumption of the cooling and heating systems for buildings, domestic hot and cold water supply, and refrigerated systems including ducts and housings. However, for industrial facilities such as power plants, refineries, and paper mills, mechanical thermal insulations are installed to control heat gain or heat loss on process piping and equipment, steam and condensate distribution systems, boilers, smoke stacks, bag houses and precipitators, and storage tanks.(Avtivity, 2008)Thermal insulation for mechanical system is to dominate the temperatures of the surface for personnel and equipment protection. That is one of the most effective mediums of protecting workers from second and third degree burns resulting from skin contact for more than 5 seconds with surfaces of hot piping and equipme nt operating at temperatures above 136.4F.(Avtivity, 2008) Thermal insulation will function to reduces the surface temperature of piping or equipment into a safer level as required by OSHA, resulting in increased worker safety and the avoidance of worker downtime due to injury.(Avtivity, 2008)Besides, thermal insulation also will control the temperature of commercial and industrial processes when installed in the mechanical system.(Avtivity, 2008) Thermal insulation can help maintain process temperature to a pre-determined value or within a predetermined range by reducing heat loss or gain. The insulation thickness must be sufficient to limit the heat transfer in a dynamic system or limit the temperature change, with time, in a static system.(Avtivity, 2008) The need to provide time for owners to take remedial action in emergency situations in the event of loss of electrical power, or heat sources is a major reason for this action in a static system.At last but not least, installed the thermal insulation in the mechanical system will reduce noise from mechanical systems.(Avtivity, 2008) Insulation materials can be used in the design of an assembly having a high sound attenuation or sound resistance. The sound transmission loss when the thermal insulation to be installed between the source and the surrounding area.(Avtivity, 2008) So, thermal insulation not only can be used for building but also for the mechanical system in commercial buildings and industrial processes in order to achieve different effects.2.2 The importance or advantages of thermal insulation in Malaysia2.2.1 Advantages of thermal insulation in MalaysiaGovernments all over the world are beginning to recognize the significance of reducing dependence on energy imports as fuel reserves becomes scarcer and supplies are focused on a few politically unstable countries. In the Malaysian context, the ener

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.